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1, Introduction, The objcet of this paper is to develop a theory of

periodic processes of sufficient generality that it can be applied to
systems defined by partial differential equations (distributed parameter
systcms), functional differcntial equations of retarded and neutral type
(hereditary systems), systems arising in the theory of elasticity, etc,
A lurge number of examples of autonomous processes (dynamical systems)
and more complete references can be found in the paper [1l] by Hale,
There the principal objective was to obtain a generalized invariance
principle and to exploit this inv:.riance to obtain a general stability
theory., The results in [1] were extended in [2] by Slemrod to periodie
dynamical systems and Dafermos in [3] gave an invariance principle for
compact processes which include periodic processes, Recent applicatlons
of this stability theory can be found in [4]-[T].

The purpose here is to develop in the spirit of the work
above a general and meaningful theory of dissipative periodic systems,
ﬁbre specifically, we study the iterates of the period map T associated
with a class of dissipative periodic processes, prove that large iterates
of T always have fixed points, characterize and prove the existence and
stability of the maximal compact invariant set of T, Nonlinear or-
dinary differential equations which are periodic and dissipative were
studied by Levinson [8] in 194k and more general results can be found in
{9], [10], [11]. This paper also includes all of the results stated
in [12]. PFor ordinary differentisl equations, the period mep T is
topolggical and the space is locally compact. However, for the appli-

cations we have in mind, the mapping may not be topological and the state



spaces are not locally compact, Because of this and because we wish a
unified theory with a wide range of applications, the identification
of suitable hypotheses and their theory is by no means s trivial exer-
cise,

Section 2 ié devoted to the definition and examples of pro-
cesses, Sections 3 and L4 contain the basic theory for o special class
of dissipative processes, Some indication is given in Section 3 of how
the theory relates to retarded functional differential equations,
neutral functional differential equations and partial differential equa-
tions, Applications of the theory and sufficient conditions for dissi-

pativeness in terms of Liapunov functions will be discussed in a later

paper,




2, Processes, Let R denote the renl numbers ’ R* the nonnegative
reals and let X be a Bunach space with norm |¢|. Consider a mapping
us RX X X R* 5X and define & mapping U(g,7): X =X for each ¢ ¢ R,

TGR+ by

U(o,T)x = u(o,x,1).

It is convenient *o interpret U(o,T)x as the state of the system at
time o+1 Iif initially the state of the system at time o was x, A
process on e Banach space X is a mapping ut R X X X R* =X with the

following properties:

(2.1) u is continuous
(2.2) U(9,0) = I, the identity
(2.3) U(o+s,t)U(0,8) = U(o,s+1)

Thus a process ls essentially what was called in [2] a "generalized non-
sutonomous dynamical system" and differs by the continuity condition on
u from what was called a process in [3]. The (positive) motion or orbit

through (o,x) is UT.-.OU(Q, 7)%. A motion is said to be periodic of
pericd a >0 if U(o,t+) = U(o,t) -for all 71 e 4

A process is said to be E. eriodic of period w >0 if U(oww,T) =

U(o,t) for all o e¢R, 7 ¢ R*. A process is said to be autonomous (or

the process is a dynamical system) if U(g,7) = U(0,7) for all o e R,

+
TeR.,



Let us now glve some exmmples of processes,

Example 2,1, Ordinary differential equations, Suppose f£3 R X E® - E°

is continuous and for any o ¢ R, £ ¢ E°, the solution o(t,0,¢), o(o,0,8) =

§, of the equation
= £(t,x)

exists for all t % 0, is unique and dervnds continuously upon t,0,¢.
Uniqueness of the solution implies o(t+7,0,¢&) = @(t+7,t,0(t,0,8)). There-

fore, if we let u(o,&,v) = ¢(o+7,0,t), then u is & process on EP,

Example 2,2, Retarded functional differential egua’cions. et » 20

be given, C = C([-r,O],En) be the space of continuous functions mapping
[-r,0] dinto E® with the topology of uniform convergence, For any
continuous function x defined on [-r,A), A >0, and any t ¢ [0,4A),
let x, in C be defined by xt(e) = x(t+0), -r & 6 € 0O, Suppose

f: Rx¢C —)En is continuous, A funection x = x(a,cp) defined and con-
tinuous on [g-r,0+A), A >0, is said to be a solution of the retarded

~ functional differential equation

(2.4) %(t) = t(t:xt)

with initial value ¢ at o if X, =® and x(t) satisfies (2.4)
for t ¢ (0,04A). For any (o,9) € R X C, suppose a solution x(0,)
existe on [-r,»), is unique and x(o0,p)(t) depends continuously on

(0,0,t). If u(o,@,7) = x

g_'_T(a,cp), then u is s process on C. A



brief survey of the history of functional differential equations is given
in [13 ), For sufficient conditions for existence uniqueness, continuity
and coutinuation to the right, see [1], [4], (4], [15] or [16). These condi-
tions are quite simllar to the ones for ordinary differential equations.

If we assume further that f£(t+w,®) = £(t,9) for all (t,p) ¢
RXC and f takes bounded sets of R X C into bounded sets of En,
then every bounded orbit of (2.4) is precompact in €, In fact, even

more 1s true; for any bounded set B C C, there is a compact set B* in

C suchthat x. ¢ B for o8t 048, s & r implies x ¢ B* for

gir & t % 048, This is clear because if |[x(t)| <b for t € [0,04s),

then |%.] <d for t ¢ [o+r,045) and some constent d, This smoothing
of the initlal date wes exploited by Hale in [1] although he did not use

and did not need a smoothing property as strong as this one,

Exemple 2,3, Functional differential equations of neutral type. A

general definition of equations of neutral type as well as basic theorems
of existence, uniqueness, continuous dependence and continuvation may

be found in [16] (see also [4]). For the purposes of this paper, we

are content to illustrate them in a special case,

With the notation as in Example 2,2, let D,f: R X C = E® be

continuous,
(2.3) D(t,9) = ®(0) + B (£)P(-7,) +..ot B(t)O(-7,)
where 0 <ry & r (if E, % 0), Bj(t) are .uniformly continuous and bounded

for t € R. A function x = x(0,p) defined and continuous on [0-r,0+A),

.
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A >0 is sald to be a solution of the neutral functional differential

equation

(2.6) &= D(t,x,) = £(t,%,)

with initisl value ¢ at o if Xy = 9y D(t,xt) is continuously dif-
ferentieble on (o,0+A) and satisfies (2,6) on (0,0+A). We assume that
for any (o0,0) ¢ R X C, & solution x(o,p) exists on [o-r,=), is unique
and x(7,0)(t) is continuous in (o,Q,t). The function u(o,p,t) =
xa+T(a,¢) is a process on C,

In general, the solutions of a neutral functional differential
equation are no smoother than the initiel data, In particular, a bounded
orbit In C mey not belong to a precompact set in C, To overcome this
diffieulty, further conditions were imposed in [4] on the operator D.
More specifically, the operator D is said to be stable if there is »

constent N such that for every function h continuous on R, the solu-

tion x(o,9,h), x (0,9,h) = ¢ of the equation
D(t,x.) = D(0,0) + h(t)-h(0)
satisfies

‘xt(“:q)ah)l s N|o| + sup |b(u) - h(“)']: t %0,
gsust

It is shown in [U4] that the operator D is stable if and only if the



solutions of the homogencous eguation It ,xt-) =0 Are unirormly'asymptoti-
cally stable,
Now suppese D(t,9), £(t,p) are w-periodic in t, D is stable
and f tukes bounied scts into bounded sets, Then it is not difficult
to show that an orbit of (2.6) bounded in C is precompact in €, In
fect, 1f x 1s the solution corresponding to the bounded orbit, then
Lt
D(t41,%,, ) = D(osT,x ) + [ 2(s,x,)ds

o+
t

D(t,x,) = D(o‘,xo) + [ £(8,x,)ds
o
and

D(ﬁf?,xt+1-xt) = -D(t47,x,) + P(#}xt) * D(q+1,xa*1) - D(a,%;)

4T C+T
+ ([ =1 )e(s,x)as
t ¢

Using the definition of a stable operator D, the uniform continuity of
D(t,9) - in t and the continuity of Xy4p 13 T, one obtains the re-
sult,

Actually the same proof gives the following results

- *
Remark 2,1, If K is & compact subset of C and umxrga,m is

*
bounded, then U@eKT (0,9) is precompect. This latter property is not
necesserily true if K is only a bounded set (compare with Exemple 2.2)

Under the same hypotheses as above, +he solution operator
def
T(t,0) = x.(0,p) has the following interesting propertys



‘Remark 2.2, There is e linear operator Tl(i'.;aL and constants K > 0,

o >0 such that

|z {t,0)| # ke t-9) ¢z,

»

and a nonlinear operator Tait,g) such that for any bounded c:t B C C,

there is & compact set B* C C such that T(t,0)p ¢ B for o &t & o+s,

s 2 r, implies T,(t,0)p ¢ B* for o+r £t 5 o+s and

T(t,0) = 'l‘l(t,a) * Ta(t,a)

A speciel case of this result was proved by Hale in [17]. The same proof

glves the more general result stated here,

Exemple2,4. Purtisl differential equations, Certein types of parabolic

and hyperbolic partial differential equations have been shown to define
processes on appropriate Scbolev spaces (see [18], [19], [20]). In the
parabolic case, the solution is generally smoother than the initial date
and a b;:unded orbit is precompact, In the hyperbolic case, this smooth-
ing effect does not teke place. On the other hand, 1f wve know that &
hyperbolic equation defines a process on two Sobolev speces #,

with @ C & algebraically and topologically and the injection mep
completely continuous, then a bounded orbit in 4 will e precompect in
¥. This property has been used effectively in the analysis of the
asymptotic behavior of the solutions of partial differential equations



(sec [1], [21]), [22]) and we will ume it again for pericdic prccesses,

Our objective in this paper is to study the existence of periodic
solutions and asymptolic behavior of perlodic processes, For a periodic
process and eny fixed t € R, there 1s associated a continuous mapping

Ts X =X defineu by
Tx = U(0,w)x,

If T" 4s the nth iterate of T, it follows from (2.3) that T° =
U(o,nw) » Since for a periodic process U(o,T+kw) = U(g+kw, T)U(0, ko) =
U(0,7)U(0,kw), 1t follows that the fixed points of TX correspond to
periodic motions of period kw of the periodic process,
With this motivation, we now turn our attention to the study of m-

crete dynamical systems; namely, the iterates of a continvous mapping

Ts X <X, where X is a Banach space. The (positive) motion or orbit

'r"'(x) through x € X 1is the sequence Tnx, n=0,1,2,,,. + A point

y is said to be a limit point of the motion through x 1if there exists
n

& subsequence . of integers such that n, —»os and T kx -y a8

k -, The limit set IL(x) is the set of all 2imit points of T%(x).
Note that

(2.7) I(x) = :C!l aw"(x),
J=0 nsj

where Cl denotes closure,



A set MCX is sald to be positively invarieat if T(M) C M

and negatively invariant if M T(M), 1t is said to be invarisut if
T(M) = M; {het is, if it is both positively and negatively invariant,
Negative invarlance and the axiom of choice implies the existence on M

1l

of a right inverse T™" to T, Hence we have 7" defined for all

integers n (when n is negative 7" (T'l)'n) with the property that
Lt L P SR Y | nonnegative integers k,J. Thus negative inveri.-
ance implies the existence of an extension over all integers of ~ach posi-
tive motion through a point of M end the negative extension is contained
in M. Although the following lemma is essentlally contained in [1],

(2], [3]), the proof for the case of discrete motions is especially sinmple

and is incluied, The same proof yields the more general result, Lemma 4,1,

Lemns 2,1, If 7v'(x) ie precompect, then the limit set I(x) is non-

empty, compact and invarient,

Proofs I(x) is the intersection (2,7) of a descending sequence of non-
empty compect sets and is therefore nonempty and compact. The continuity
of T implies IL(x) is positively invariant, Let y ¢ L(x). Then
there is a sequence of integers nJ such thet n:1 >0 , 'l'n'jx -~y 88

J =, By the precompactness assumption, we can select a asubsequence
(which we agein label as n 31)1 such that Tn'j'lx -2z a8 J =0, Now
t¢L(x) end Tz =lm T Jx = y by the continuity of T. Hence

I{x) C T(L(x)) which shows I(x) is invariant.
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We now wish to impose on the operator T "smoothing" properties
which will permit T +to be the period map as:ociated with any of the
periodie procecses mentioned in the above examples, Also, one expeets
that real procecsses wlill be dissipative for large displacemenis and the
notion of dissipativeacss is naturally associated with boundedness, With
applications in mind, we develop a theory of dissipative processes based

on boundedness and the smoothing property alluded to above,
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3, Dissipative systems, Suppose 9,%  are Banach spuces, Z <%

algebraically and topologically and the injection map I taking 2 intc
% is continuouse Suppose T defines a discrete dynamical system on
both @ and ¥, The symbol 92?(1\) denotes the &-neighborhood in &
of a subset A of #. The symbol ClgA denotes the closure in &
of a subset A of %. If B 4is a subset of &, then ¥ (B) =

Uyep T(X)e At times, we need the following hypotheses on T,

H,) A dissipative property. There exists a bounded set
BC # such that for each bounded set MC ¥ and x ¢ ¥, there is a

neighborhood off’ C¥ of x and an integer N(x,M) such that

Tn[of NM]CB for all n z N(x,M).
Hy) A smoothness property. For each bounded set BC &,
def
there exists a bounded set AC 2 with B¥ = (1l A compact in &

4
such that, for every € > D, there is an integer no(e sB) with the pro-

perty that T"x € B for 0O & ns N, Nz no(e,B), implies T x e %'?(A)
for no(e,B) snsEN

: H3) A fixed point property. There is an integer ky such

that for every closed bounded convex set BC # and every integer

n
k2 Ky, if T°CL,B 1s bounded for O % n sk and s CL B -ClB,

then T® hes a fixed point in c1 B

.

Hy) A smoothness property. For any bounded set B C P with

Cle, B compact in %, if y'(B) is bounded in @ then 7""(01_,{3) is

precampact in ¥,



1%

Before discussing some of the proper;c;ies of discrete dynami-
cal systems described by a system satisfying property H.L) - Hlt)-’ let us
discuss these hypo{;heses in connection vith the examples mentloned
above.

Let us consider first the case where #= £ = X. Hypotheses

Hl) - Hl&) becomes

HY) There is a bounded set B C X such that for any x € X,
there is a neighborhood 0, of x and an integer N(x) such that

1%, CB for n % N(x).

Hé) For any bounded B C X, there is a compact B* C X such
that for any € > 0, there is an no(c ,B) with the property that

™x ¢ B for n 20 implies T'x € me(B*) for n & no(e,B).

I—%) Tnere is an integer k, such that for every closed

bounded convex set B C X and every integer k 2 ko, if T°B is bounded
for 0 #n £k and Tkz B - B, then Tk hes a fixed point in B.

Hh) For any compact set B C X, 7 (B) bounded implies ¥ (B)
precompacte

In the previous section, it was shown that the operator T

assoclated with retard.:d functional differential equations satisfied
the following conditions

H‘é) There is a nonnegative integerv By, 8uch that for any
bounded set B C X, there is a compact set B¥ in X such that T'x € B

for osniN,‘Ni-'no, implies 8% ¢ B* . for nOSn.{iH.
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Any operator that cutisfies H)) autumatically satisfies HL), 35), HL).
For instance, HB Tfollows from the Schauder fixed point theorem,since

k
with k. =n. it follows that T o(B) is contained in a compaet set

0 0
of X. For operators satisfying Hg), onc can estvablish the results to
follow under an hypothesis of dissipativeness weaker than Hi); in fact,
we will show that it is enough to assume
Ha) There¢ is a bounded set B in X with the property that
given x € X there is a positive integer N(x) such that ™% € B for
n 2 N(x).

Theorem 3.1e If T satisfies Hi), Hy), then T setisfies Hi) - H).

Furthermore, there is a compact set K in X with the property
thet given a compact set H in X, there is a positive integer N(H)
and en open nelghborhood Hy of H such that T“(Hb) CK for all

n 2 n(H).

Proofs From the above remarks, it is only necessary co show that T
satisfying Hg), H%) implies T satisfies the last property stated in the
theorem., We may alﬁays assume B in H)) is open. ILet B* be the correspond

compect set in Hg) and n. the integer in H%). By the continuity of

0
T, there is an open neighiborhood 0, of x such thet T7(0,) CB for
N(x) # n 8 N(x)+n,. Therefore, T“(“)ox'c:B*, where n(x) = N(x)+no.
Suppose H is an arbitrary compact set in X. The neighborhoods Ox’

x € H form a covering of H, Selecting from this covering a finite
covering, we see there is an integer n(H) such that for each 0, of
this finite covering there is an 1 = i(x) such that O s i & n(H) and .
Ti(ox) C B*, Hence all we need to prove the theorem is to show that

there is an integer N(B*) and a compact set K such thet T (B*) C K
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for nz N(B*). Let x € B* and let n =& n(B*) be any positive integer.

There is then a least integer J, 0 © J £ n, such that Tn-j

X € B* and
ph-k £B% for 0% k<J. It follows by what was shown above that
0 £ j £ n(B*). Hence 7% is contained in the wnion X of B*,

T(B*),...,Tn(B*)(B*), which is compact. This completes the proof.

Remark 3.1l. From the above proof, if T satisfies HE), then T satis-

fies 3) if there is a hounded set B in X with the property that
given x € X there is a positive integer N(x) such that TH%(x) € B
for N(x) #n s N(x)+no. It is only necessary to require that T (x)
remain in B long enough to "smooth".

When T satisfies H;), H3), then it follows from Theorem 3.1

that, for some integer k,, T" has a fixed point for each n 2 k, (Cor-

l)
ollary 3.2 below). If, in addition, T maps bounded sets into bounded

sets, we can prove a bit more and include a result of Yoshizawa for re-
tarded functional differential equations whose solutions are uniformly
bounded and uniformly ultimately bounded (see Yoshizawa [23] or [2k]).

The integer n, of this corollary is the n.0 of HE). For ordinary

differential equations no = 1 and for retarded functional differential

equations n. =1 1f w& r (w 1is the period and r is the retarda-

0
tion) .

Corollary 3+1ls If T satlsfies H&), Hg)_and maps bounded sets into

bounded sets, then " has a fixed point for each n 2 e

Proof. With n = n, we know that T  is completely continuous. Since
the closed convex hull of a compact set is closed, we may assume that the

compact set K in Theorem 3.1 is convex. Let £ = T°, select j suffisi-
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ently large that fJ(K) C K, let G be ithe union of K, I‘(K),...,f‘j(K),

and let 8, Dbe an opcn ball containing G. Then fk(K) C: S:l for all

1
K =0,1,ees, and for m sufficiently large fm(sl) ¢ K by Theorem
%1 and the fact that £ is completely continuous. It then follows
from Browler's extension in [25]) of the Schauder fixed point theorem
that f has a fixed point.

For the neutral equation in Exanple 2.5, Remark 2.2. implies
that H;_,) is satisfied by the corresponding operator T. Also, th? same

type of argument shows that, on a set B satisfying H%), the operator

k
TO

is the sum of a contraction and a completely continuous operator
and thus, has the fixed point property (see [16] and [17]). Hypothesis
HL) is the same as Remark 2,1, Thus, we see the eignificance of our
hypotheses for functionul differentiel equations of both retarded and
neutral type.

The case # C 2’, D4t Z, was introduced to treat partial
differential equations and especially hyperbolic equations. The spaces '
@ ,¥ are usually chosen so that the injection map Is @ -% is
comple‘cély continuous. For such a siutation hypothesis He) is satisfied
by any continuous T since we can take A = B, no(e sB) = 1, Similerly
H§) and Hlt) are satisfied by any continuous T. Therefore, when the in-
Jection map is completely continuous, the only hypotheses that will
ever be made on T are continuity and I-Il).

The following result is the more general analog of Theorem 3,.1.

Theorem 3.2. If T satisfied H,), Hy), then there is a bounded set
def

AC @ such that K = ClgA is compect and, given any compact set
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HC .‘If, there is a %'-neighborhoed Ho of H' in < such that for any
€ >0 and any bounded set MC @, T“[Ho N Cle M) is bounded in z

for each n z0 aud there is an integer nl(H,M,e) with
n -2
T [Ho n M) C.me(A), nz nl(H,M,c).

Proofs ret B be as in Hy), A and B¥ as in H,). Then K = B¥ is
compact., Tet H be an arbitrary compact set, Since T is locally
dissipative, for any x ¢ H and any bounded MC 4, there is a ¥ -

. neighborhood 0, of x and an integer N(x ,M)' such that sr"[ox NM]CB
for n z N(x,M). Selecting from this covering of H a finite cover-

L C ¥

of H such that T'[H, NM]CB for n & N(H,M). Since H is compact

ing, we see there is an integer N(H,M) and a % -neighborhood H

and T is continuous, one can choose a finite covering of H in such
a way that it ylelds a %-neighborhood Hy of H with B CH, and
T'[H)] bounded in C for O & n s N(HM). Since T[B, N M) CB for
ns n(H,M), this implles '.I'n[I-Io N Cl, _M] is bounded for n 2 0, Using
H,), for'any € >0, it follows that

Tn[Ho n M c%‘f(A) for n # N(H,M) + ny(€,B).

If we suppress the dependence on B and let nl(H,M,e) = N(H,M) + no(S,B),

then the theorem is proved.

Corollary 3.2, If T satisfies H), H)), H5), then there is an integer

kl such that T" has a fixed point in ¥ for esch nx kl‘

Proofs Take K,A as in Theorem 3.2. 8ince the closed convex hull of

a compact set in a Banach space is ¢

A . det
Choose & >0 80 smell that 8 = elﬁ,(@&)) C K . o
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Theorem 3.2iplies there is an integer nl(A ,€) such that T ‘)?'ﬁA)) -
m?(A) for n inl( A,£)s Therefore, the continuity of T" implies

Tn(Clgm%(A)) c Clg,'l‘n(m‘?(A)) - Clgm'?(A)

for n i nl(A,e) , or T" tekes the closed bounded ccnvex set § into
itself for n nl(A,e). Let k) = max(ko, nl(A,e)) where k) is
the integer in H3)° From Theorem 3.2, T"(8) is bounded for all n & l.
Therefore, 'H}) implies T" hes a fixed point in 8 for each n % kyeo




19

&- The 1imlt set J. We wish now to show that if T satisfied hy-
potheses H,), H,) and H),), then there is a compact invariant set J
that is globally asymptotieanlly stable.s The set J is the natural
generalization of ithe maxinul compact invariant set introduced in [8],

and vhen # = %, the set J is the maximal compact invariant sel of [12],

- Iet AC % ve the bounded set of Thoorem 3.1. Then

K = ClgA is compact., Let

-]
(bel) J= n TYK).

ns=0
0f course, since A 1is not unique, K 1is not unigque, but we can prove
thet J is independent of A. Observe first thet if J(A) is the set

defined by (4ol), then J(A) C TI(J(A)) for all J & 1. If A, is

1
any other bounded set satisfying the same conditions as A of Theorem
542 end K, = CleoA), then for any € >0 ‘there is an n,(K,K;,8) such
that T (A) cmg’( A), T (A ) cm‘;’kA) for n % n,(K,K;,8). Thus, for
any positive sequence ed -0 as ¢J ==, there is a sequence n.J -

a8 j - such thet T J(A) c ‘Rg( ), T J(A )C mg(A), Jj =2,2 sese o

Consequently, there are positive ¢

d-»o ag J = uuch that

"’(K) -1 "(c:L A) C ClgT da) C1, R (Al)
C ’?ag;(lil), J = 1;2500'

n
RS ACHERECR

Thus, J(X) C K, J(Ky) C K. Since J(K) C2(J(K)) for sl § 31 emd



eny K, this proves that J 4is independent of K.

For any bounded set B in @ with u“sfmgn compact, de-

fine I(H), the 1imit set of the motion through H, by

H-:Cl GT" .
L(H) N O b (1)

Then y € 1L{H) means there exist sequences of integers n‘j and ele-
: n
meunts yJ € H such that nJ - and T Jyd -y as J ->e When H

is a single point this is the usuel limit set I(x). Just as for Lemme
2,1, we obtain ‘

® n
Lemme L.le If U T (H) is precompact in % for J sufficiently

n=j
large, then IL(H) is a nonempty compact inverient set of %,

Definition bels A set M in & is said to be & global attractor
(B,%) if for each x ¢ B, T"x »M in £ as n >,

Theorem 4,1, Suppose T satisfies Hl)’ He), Hh)’ A is the bounded

set in @ of Theorem 3.1 and X = ClcAe Then J = I{X), J is a non-
empty compact invariant set end J is a global attractor (#,%).

If H is eny other compect invariant set in £, H s Cleh for some
bounded M C 4, then HC J.

Prooft Since T is locally dissipative and K 1is compact, there is an
integer N(A) such that T°(A) = T[KN A} CB for ' & N(A). Thus,
r*(TN(A)A) is bounded in @, Hypothesis H,) implies f*(f’(“)cz.?a)
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is prccompact in %, Lenmu 4ol implies that I(K) is a nonempty, com-
pact invariant set of ¥,

Clearly J C I{K)s To prove the converse, suppose y € I{K)
and Tnixi -y as 1 - x vyhere nd —»® as J o and each X, € K.

Since r+(TN(A)K) is precompact in £, for any integer J we can find

n,~J
a subsequence of the T i x;l (which we label the same as before) and a

-J
i xi—’yj as 1 -, Bu’q then Tdy'j -y

v e cxgr*(x) such that T
and thus y € J. Therefore J = L(K).

Now suppose that H 1is any compact invariant set in & with
Ha= ClgM and M bounded in %D, Then H = T'(H) for every n.
Theorem 3.2 implies, for every &€ > 0, there is an nl(H,M,e) 20 such
that Tn(Ho n M) ijea(A) for n& nl(H,M,e). Teking the closure in 2,

we obtain, for n nl(H,M,e),

H=T%H) C TnIClg(Ho nMj)c c:tg:c“wo n M)

2 "4
c 011928(5) € Ryey(K)

for some positive of€) -0 as & - 0. This implies HC K.

Now suppose x is an arbitrary element of @. Then
Clg{x} = (x}s Theorem 3.2 implies ¥'(x} is bounded in 9 and Hlt-)
implies ¥ (x)} 1is precompact in ¥, Thus, L{x} is nonempty, compact
and invariant, and IL{x)} C J. This proves J is a global attractor
(@,¥) end completes the proof of the theorem.
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Definition &2, Suppose -J C & is an invariant set. We sey J is

stable (4,%) if for every € >0, there isa &>0 such that for
every bounded set M in X, there is an integer no(M,b,e) such that
y € %%ZJ) NM impiies T x e ‘J?E(J) for nz no(M,b,e).

Definition 4.3, Suppose J C # is an invariant rote We say J is

weakly stable (#,%) if for any € >0, there 15 a &> 0 such thst
if x ¢ mﬁJ), then T ¢ 92‘;"(.3') for n& Q.

It B= %, these two definitions are equivalent.

Lemna 4,2, ny JC @ is invariant and J is compact in X, then J
stable (@,%) implies J is weakly stable (@,%).

Prooft If JC £ is steble (49,%), then for any € >0,

there is a2 8 >'0 such that for every 61 > 0, there is sn integer

no(bl,b,c) such that x € mﬁJ) n m?(J) implies T x ¢ mg(J)
: 1

for n @ no( 61, 5€)s If J is compact, then there is & 8 >0 such

that x € m‘az(J) implies T x € mf(.r) for O §n s no(bl,b,e). I

8, < 8, then x e m?(J) N m'?(d‘) implies T x € mﬁJ) for nz O
% 1 |

If we choose 3} < 3, so0 that ‘RQ,(J) c %g(.'f), then x ¢ 9?'?,(&')
wea.kly°2 1

n
implies Tx € NE(I); thet s, J is Jetabie (@,%).

The argument used in the proof of the following result is
similer to one used by LaSalle in [26]. '

Theorem 4e2, If T sutisfies Hl) s Hp), Hlp) andJ ! a8 defined in (4.1),
then J is stable (#,%¥) and if JC @, then J is
stable (4,%).



Proof: Assume J is not stable (9D,%). Then for some
€ >0 (which may be chosen as small as desired), there are sequences
=) o,

of integers n'j and y, ¢ ms"(J) N 4 such that n I as

o ol ? ’$ ¢

o8 J —sw, T yy € Ne(I), 0 & n s nys and T Yy is not in me(J).

The y 3 considered as elements of £ may or may not be unbounded.

Since J 1is compact, we may assume there 1s a y € J such that

yy oy e J = The set H = (yd, J = 1,2,000,y} 1is compact in ¥ .
If H is bounded in @, then it follows from Theorem 3.2

that for any 1 >0 there is an integer n* = n*(H,3) such that

Tn(H) Cm'%(A) for n & n*, Thus, T"'(Tn*(H)) is bou.nded;'j? %ypothesia

H,) implies rf}(Tn*(H)) is precompact. Therefore, Lemma 41 implies

rdsf I{H) is nonempty, compact and inva.rian‘o. Furthérmore, v 1s the

closure in £ of a bounded set in #. Thus, Theorem L.l implies v C J.

Also, since 7t (T (H)) is precompactﬁw%’may assune (by choosing a sub-

'aequence 1f necessary) that T jyd +2¢6% a8 J-o, Then 2¢ yCJ.

But this cholce of the n, eand y, implies that Tz 4 mE(J) and

J
therefore Tz £ J. Since J is invariant, this is a contradiction and
the proof of the theorem is complete for the case in which H 1is bounded
in @,

If '‘H 1s unbounded in .@, suppose the yJ are ordered in
such & way that ||y3|| - a8 J =->w, From Theorem 3.2 ror. each integer
J and real 1 >0, there is an integer N(J,n) such that ™ vy € 9’&%1&)
for n & N(j,n). Now we may asgume the n, 80 chosen that n,  8(j,m)e
Thererore, Tnjyj € %%A) ror J = 1,2,000 0o Let H¥ = {Tnlyl,ﬂ.'naya,...}.

Then Q(H*) is bounded end hypothesis H)) implies T(u*) is precompect in S



2L

n

Therefore, there is & subsequence of the T ‘Tyd if necessary and a 2z
n

such that, 'I":';,r:j -2z as J —ew, B8ince Tz is not in 9?5.7), z is

not in J. But using the same argument as before z ¢ L(H) C J. This

contradiction implies J is stable (#,%). The last part of the

theorem follows from Lemma 4,2.
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